


# HydroCab PowerCore

**Powered by nature Self Recharging Fuel Cell** 



- Combines water electrolysis and fuel cells in one self-sufficient energy system for short- and long-term energy storage
- Can be integrated into all existing PV, wind or hydropower plants
- Logistics-free, sustainable energy solution
- Easy operation, independent of external Electricity price fluctuations
- Up to 2 Nm³/h H2 production and up to 8 kW electric output power configurable
- Integrated dryer ensures H2 purity of 99.999% (5.0)
- H2 outlet pressure already 35 bar
- Fuel cells can be integrated modularly up to 8 kW power
- Suitable hydrogen storage solutions for effectively available energy from 40 kWh to >> 1,000 kWh
- Modularly scalable and expandable at any time
- Plug and play, easy installation and low maintenance operation

POWERING THE WORLD WITH GREEN HYDROGEN.



### **System Configuration**













|                            | 0.5 m³ H2 per ho                                                                                   | ur H2 Production                 | 1 m³ H2 per hour H2 Production  |                                    |                                  |  |
|----------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------|----------------------------------|--|
| Configuration              | 2.5 kW-0.5 Nm³/h                                                                                   | 4 kW-0.5 Nm <sup>3</sup> /h      | 8 kW-1 Nm³/h                    | 2.5 kW-1 Nm³/h                     | 4 kW-1 Nm³/h                     |  |
| Power Output<br>(Charging) | 2.5 kW @ 48 V or<br>1.92 kW @ 24 V                                                                 | 4 kW @ 48 V or<br>2.88 kW @ 24 V | 8 kW@ 48 V or<br>5.76 kW @ 24 V | 2.5 kW @ 48 V or<br>1.92 kW @ 24 V | 4 kW @ 48 V or<br>2.88 kW @ 24 V |  |
| Rated Current              | 52 A @ 48 V or<br>80 A @ 24 V                                                                      | 83 A @ 48 V or<br>120 A @ 24 V   | 166 A @ 48 V or<br>240 A @ 24 V | 52 A @ 48 V or<br>80 A @ 24 V      | 83 A @ 48 V or<br>120 A @ 24 V   |  |
| <b>H2 Consumption</b>      | Less than 70g per kWh                                                                              |                                  |                                 |                                    |                                  |  |
| Emission                   | Water Vapor                                                                                        |                                  |                                 |                                    |                                  |  |
| Operation                  | Altitude 0 – 4000m   Ambient Temp +5°C - +40°C   Humidity 10 - 90%                                 |                                  |                                 |                                    |                                  |  |
| H2 Production<br>(Storage) | 500 NL/h<br>1 kg/24h                                                                               | 500 NL/h<br>1 kg/24h             | 1000 NL/h<br>2 kg/24h           | 1000 NL/h<br>2 kg/24h              | 1000 NL/h<br>2 kg/24h            |  |
| <b>Power Consumption</b>   | 2.4 kW                                                                                             | 2.4 kW                           | 4.8 kW                          | 4.8 kW                             | 4. 8kW                           |  |
| <b>Standby Consumption</b> | 15 W                                                                                               | 15 W                             | 30 W                            | 30 W                               | 30 W                             |  |
| <b>Water Consumption</b>   | 0.4 L/h                                                                                            | 0.4 L/h                          | 0.8 L/h                         | 0.8 L/h                            | 0.8 L/h                          |  |
| <b>Output Pressure</b>     | 35 bar                                                                                             |                                  |                                 |                                    |                                  |  |
| H2 Purity                  | ~ 99.9% (Impurities ~1000 ppm $H_2O_r$ < 1 ppm of any $N2/O_2/Ar/CO/CO_2$ )                        |                                  |                                 |                                    |                                  |  |
| With Dryer                 | ~ 99.999% (Impurities : < 1 ppm of any H <sub>2</sub> O/N2/O <sub>2</sub> /Ar/CO/CO <sub>2</sub> ) |                                  |                                 |                                    |                                  |  |
| Water purity               | < 20 μS/cm (@25°C)                                                                                 |                                  |                                 |                                    |                                  |  |

# **Hydrogen Storage**

| 850 L Steel Vessel @ 35bar | 5 m³ Steel Vessel @ 35 bar | 30 m³ Steel Vessel @ 35bar | Super Capacitors |
|----------------------------|----------------------------|----------------------------|------------------|
| 30 Nm³ / 40 kWh            | 175 Nm³ / 230 kWh          | 1050 Nm³ / 1400 kWh        | 5 kWh @48 V      |
| (electrically usable)**    | (electrically usable)      | (electrically usable)      | 7,5 kWh @48 V    |



<sup>\*</sup> other sizes on request. \*\*Heat energy additionally usable.

#### **Use Cases**

Hydrogen's versatility as energy storage is possible with our plug-and-play building blocks



#### **Grid Storage France**

Hydrogen keeps this refuge in the Alps operational all year-round. Since 2015, it runs autonomously for up to 16 days without sunshine using a 2 kW fuel cell.

Electrolyser 500 NL/h Storage 5 kg



### **Renewable Storage La Reunion Island**

Only accessible by foot or helicopter, the community is energy independent with solar and hydrogen since 2017. The storage system provides 10 days of autonomy.

Electrolyser 500 NI/h Storage 3 kg



# Residential MicroGrid In Münster, Germany

1x EL 2.0 in combination with a fuel cell to provide seasonal storage.

Electrolyser 500 NL/h 600 L Storage



#### **Mobile Refueling China**

Electrolysers are integrated into a mobile drone refueling station. The electrolyser produces hydrogen right onsite to refuel drones that need to be in the air for durations of over 12 hours.



# Residential MicroGrid Chang Mai, Thailand

Off Grid community of 6 building with 86 kWPV solar is energy positive since operation. Power produced also operates water pumps for irrigation **Electrolyser 1000 NL/h** 



#### Telecom BTS Lompia, Malaysia

2x EL 2.0 in combination with a fuel cell to provide fully autonomous energy 24/7. **Electrolyser 1000 NL/h** 



#### **Power-to-Gas Australia**

Solar made hydrogen is combined with CO<sub>2</sub> which is extracted directly from the air to create renewable methane. Such "power fuel" can be used for heating and cooling, transport or industrial use.



#### **Power to Heat Netherlands**

In June 2019, the first hydrogen project for residential heating was officially opened in Rozenburg near Rotterdam. Green hydrogen is directly used to generate heat. **Electrolyser 4,000 NL/h** 



## **Telecom BTS Hoddies Creak Australia**

2x EL 2.0 in combination with a fuel cell to provide fully autonomous energy 24/7.

Electrolyser 1000 NL/h